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1 Introduction and Background

N-Myristoylation

_—~Membrane binding
N
12 H/\n/ 4 jj ~—>| Protein stability

| Protein function
Myristoylated protein

NMT1/2
Myr- CoA

Riosme

Nascent peptide
Fig 1. N-myristoylation, an essential modification. N-myristoylation is catalysed by
N-myristoyltransferases 1/2 (NMT) and is predominantly co-translationall. After initiator

methionine removal to reveal a N-terminal glycine, NMTs transfer a myristate group from
myristoyl-CoA to the nascent peptide of selected proteins.

2 Predicting Sensitivity to NMTI
Strategy to ldentify a Sensitivity Signature
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Fig 4. Identification of NMTi Sensitivity Signature (NSS). Sensitivity to MYX1715 was
determined on a panel of 245 cancer lines. sSGSEA was performed on their transcriptome
and the gene sets whose expression best define NMTi sensitivity were identified.

Gene expression

Low membrane protein expression, low protein secretion
and high MYC target expression predicts NMTi sensitivity
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Fig 5. Gene sets which best discriminate between NMTi-sensitive and insensitive
lines. Gene sets are consistent with higher oncogenic load in cells.

LINCS L1000 data shows that the UPR imitates NMTi KO.
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Fig 6. Components of the unfolded protein response (UPR) phenocopy NMT KO.
The LINCS L1000 dataset on knockdown of UPR proteins was analysed. Knockdown of
genes in red phenocopy NMTi in most of the cell lines in the LINCS L1000 dataset.
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NMT as a cancer target
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Fig 2. NMT as a cancer target. NMT has been suggested as a cancer target, but a
mechanistic rationale to identify patients for targeted therapy is lacking?. The mode of
action (MoA) of NMT inhibitors (NMTi) is also difficult to dissect given its pleiotropic MoA3.

3 Diffuse Large B-Cell Lymphoma
NMTI Sensitivity Correlates with MYC in a Tet-Off System
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Fig 7. NMTi toxicity in the MYC-regulatable P493-6 cells depends on MYC status.
Effect of IMP1088 in in the high (top left), medium (top middle) and low (top right) MYC
states. Western blot showing MYC levels in P493 cells in each state (bottom).

Proteomics Identifies a Strong Impact on Mitochondria
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Fig 8. Effect of NMTi on proteome dynamics. Experimental set up (left). 1D enrichment
on differential synthesis of proteins in high MYC cells (right).
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Fig 9. NMTi induces mitochondrial dysfunction in high MYC cells. The effect of
IMP1088 on mitochondria in high (left) and medium (right) MYC P493-6 cells.
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Fig 10. The NMT substrate and complex | assembly factor NDUFAF4 is lost upon
NMT inhibition. Loss of NDUFAF4 myristoylation by IMP1088 treatment leads to its
degradation, which is associated with Complex | defects?.

4 Neuroblastoma
NMTIi Sensitivity Correlates with MYCN Status In vitro
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Fig 11. Sensitivity of the MYCN tet-off SHEP21N neuroblastoma cells to IMP1088.
Response of SHEP21N cells to IMP1088 in the high MYCN (left) and low MYCN (right).

SHEP|SKNSH|SKNAS

IMR5 | BE(2)C

Kelly [SHEP21N (high MYCN)

Cell line SHEP21N (low MYCN)

MYCN Y Y Y Y N N N

MYC N N N N N N Low

IC50 / nM 95 45 35 65 300 N/A

Max AUC (% puro) 0.89 | 0.78 | 0.94 0.80 0.54 0.33

Table 1. Summary of IMP1088 sensitivity of neuroblastoma lines.

NMT Inhlbltors

IMP1088

Compound Ky (NM) IC50 (nM)
IMP1088 0.1+0.01 1.8
MYX1715 0.09 £ 0.01 <1

MYX1715
Fig 3. NMT inhibitors used. The structures and inhibitory potency against human NMT1.

4 Neuroblastoma cont.
IMP1088 Does Not Directly Impact MYC Family Proteins
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Fig 12. MYC proteins are not targets of NMT inhibitors.

5 NMT substrates are directly associated

with impacted pathways.
Many NMT substrates are involved in ER/Golgi function
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Fig 13. Schematic showing which NMT substrates are involved in ER/Golgi function.
Membrane Proteomics to Identlfy Involved NMT substrates
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Fig 14. Proteomic strategy to identify NMTi MoA in a MYCN-dependent context. A
selection of significantly and highly affected NMT substrates are shown.

Mechanisms of NMTi under high translation stress
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Fig 15. The effects of NMTi under high oncogenic stress. The interaction between the
ER/Golgi, lysosomes and mitochondria, which are highly coupled, may be important.

This work

« Screening of NMTi across 245 cell lines, followed by ssGSEA, identified an

NMTi sensitivity signature (NSS) and indicated that sensitivity is predicted
by MYC family proteins status as well as a membrane protein signature.

« MYC family proteins are known to increase oncogenic load and translation

stress, and we hypothesize that this increases sensitivity to NMT inhibitors.

 We have used ‘omics analyses to identify pathways involved in NMTi MoA,

Including induction of the unfolded protein response (UPR) and loss of
Complex | activity, which was functionally validated in DLBCL models.

 We have also shown that NMTi are efficacious in vivo in multiple cancer types.

6 NMT1 Is efficacious In cancer models In vivo
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Fig 16. Efficacy of MYX1715 in a DLBCL xenograft model.
Implanted into IL2ZR-NSG mice.
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Fig 17. Efficacy of MYX1715 in neuroblastoma models. Effect in a Th-MYCN allograft
model, in which Th-MYCN tumour cells were implanted in 129SvJ mice (top left).
MY X1715 prevents tumour growth in a Th-MYCN GEMM model (top right, bottom).
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Fig 18. Efficacy of MYX1715 in a gastric cancer xenograft model. SNU-620 cells
were implanted into NCG mice.

7/ Conclusions

Sensitivity to NMT inhibitors can be predicted by low expression of membrane
associated proteins, low protein secretion and high MY C-family protein activity.

Knockdown of key UPR pathway proteins phenocopies the NSS.
likely through

High MYC family protein activity sensitises cells to NMTI,
Increasing the basal oncogenic load and translational stress in these cells.

The MoA of NMTi likely involves activation of the UPR, mitochondrial
dysfunction and loss of mTOR activity.

NMT inhibitors are highly effective in vivo in multiple cancer types.



